
AppleTalk
#1: Identifying AppleTalk 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

AppleTalk
#1: Identifying AppleTalk

Revised by: Jim Luther March 1990
Written by: Dan Strnad November 1988

This Technical Note describes the correct methods for identifying AppleTalk under ProDOS 8
and GS/OS, as the ATLK ROM signature is no longer used.
Changes since July 1989: Added warning concerning ProDOS 8, version 1.4.

To determine if an application has been launched over the network, refer to the NetLaunch
code fragment found in the AppleShare Programmer’s Guide for the Apple IIGS.

Under ProDOS, to identify both AppleTalk and the slot with which it is associated for printing,
refer to Apple II AppleTalk Technical Note #4, Printing Through the Firmware.

To identify AppleTalk under ProDOS 8:

1. Issue an AppleShare GetInfo call.
2. If there is no error result, AppleTalk is installed.

InfoParams DB $00 ;Synchronous only
DB $02 ;GetInfo call number

InfoResult DS 13 ;<- results returned here

CheckATalk JSR $BF00
DB $42 ;$42 command # for AppleTalk

calls
DW InfoParams ;Parameter list address
BCS NoATalk ;handle the error

IsATalk. ... ;AppleTalk installed when here

NoATalk ... ;AppleTalk not installed when
here

Warning: Due to a bug in ProDOS 8, version 1.4, using the $42 call crashes ProDOS
8 if AppleTalk is not installed. Applications that use this routine to check
for AppleTalk should ship with ProDOS 8 version 1.5 or greater, thus
avoiding this bug. (ProDOS 8 Technical Note #21, Identifying ProDOS
Devices contains a routine which correctly identifies the presence
AppleTalk under all versions of ProDOS 8.)

To identify AppleTalk protocols and AppleShare file system under System Software 5.0:

Apple II Technical Notes

AppleTalk
2 of 2 #1: Identifying AppleTalk

1. Set up the parameter block for a GS/OS GetFSTInfo call using fstNum = 1.
2. Issue the GetFSTInfo call.
3. If the fileSysID is $0D the AppleShare FST and AppleShare are present.
4. If a parameter out of range error ($53) results, the AppleShare file system is not

present.
5. Otherwise, if steps 3 and 4 are inconclusive, increment the fstNum and loop

back to step 2.

To identify AppleTalk protocols, including LAP through PFI but excluding the file system,
under System Software 5.0:

1. Set up the parameter block for a GS/OS DInfo call using device number one.
2. Issue the DInfo call.
3. If the deviceID is $1D, the AppleTalk main driver and AppleTalk are present.
4. If a parameter out of range error ($53) results, the AppleTalk protocols are not

present.
5. Otherwise, if steps 3 and 4 are inconclusive, increment the device number and

loop back to step 2.

To identify AppleTalk protocols, including LAP through ASP but excluding the file system,
under System Software 4.0:

1. Issue an an SPGetStatus call
2. If the call returns without error, AppleTalk is present.

Note: With the release of System Software 5.0, earlier versions are not supported.

Further Reference
• Inside AppleTalk
• AppleShare Programmer's Guide for the Apple IIGS

• GS/OS Reference
• Apple II AppleTalk Technical Note #4, Printing Through the Firmware
• ProDOS 8 Technical Note #21, Identifying ProDOS Devices

AppleTalk
#2: ProDOS 8 Compatibility on the IIe and IIGS 1 of 1

Apple II
Technical Notes

Developer Technical Support
AppleTalk
#2: ProDOS 8 Compatibility on the IIe and IIGS

Written by: Mark Day November 1988

This Technical Note describes areas which could cause an application to run under the
AppleShare Apple IIe workstation software, but fail under the Apple IIGS workstation software.

• If code is running in auxiliary memory in emulation mode (e.g., ProDOS 8
programs that run code from auxiliary memory), make sure $0100 in auxiliary
memory is set to the normal stack pointer and $0101 in auxiliary memory is set to
the auxiliary (alternate) stack pointer. (See page 93 of the Apple IIe Technical
Reference Manual.)

• Make sure ProDOS calls are not made from auxiliary memory; Apple has never
recommended doing this, and it is not supported.

• Make sure interrupts are enabled when making ProDOS 8 calls.
• Make sure interrupts are not disabled for long periods of time, nor for a high

percentage of time. Whenever interrupts are disabled, there is a chance that an
AppleTalk packet will be missed (which could cause AppleShare volumes to be
unmounted). The more interrupts are disabled, the more likely that packets will
be missed. This risk is inherent for any application that disables interrupts
(directly or indirectly), therefore, interrupts should be disabled with discretion and
only when absolutely necessary.

• Make sure programs get the completion routine return address from the GetInfo
call when they are started.

• Make sure to identify AppleTalk by calling GetInfo and checking for an invalid
call number error (which means AppleTalk is not present). Do not use the ATLK
signature bytes for identification. See Apple II AppleTalk Technical Note #1,
Identifying AppleTalk.

Further Reference
• Apple IIe Technical Reference Manual
• Apple II AppleTalk Technical Note #1, Identifying AppleTalk

AppleTalk
#3: Avoiding Remote Printer Time-Outs 1 of 1

Apple II
Technical Notes

Developer Technical Support
AppleTalk
#3: Avoiding Remote Printer Time-Outs

Revised by: Jim Luther September 1989
Written by: Jim Luther May 1989

This Technical Note discusses how to avoid time-outs when printing to remote printers.
Changes since May 1989: Updated to reflect System Software 5.0 changes and to clarify the
results of changing the time-out interval.

The Apple II AppleTalk firmware’s Remote Print Manager (RPM), which supports AppleTalk’s
Super Serial Card (SSC) entry points, maintains a time-out interval value. The time-out interval
is usually set to 30 seconds. When an application quits writing to the AppleTalk firmware, the
RPM waits this time interval before sending the last block of data to the printer and closing the
Printer Access Protocol (PAP) connection.

What does this mean? If an application waits longer than the time-out interval (e.g., 30 seconds)
between any write accesses to the AppleTalk firmware (i.e., a pause between initialization and
printing or a pause during printing), the PAP connection closes, the current page may be ejected
from the printer (this is printer dependent—the ImageWriter II and ImageWriter LQ do not
automatically eject the page, the Apple LaserWriter does), and the rest of the application’s output
to the printer is lost. If you initialize the AppleTalk SSC firmware, you must print immediately
or a time-out may occur and reinitialization is necessary to print again. Applications should not
initialize the firmware and expect it still to be initialized at a later point in time.

What You Can Do

The RPM’s PMSetPrinter call may be used to change the time-out interval to a different
value. However, the time-out interval should be kept as short as possible because other users
cannot open another PAP connection with the printer until your machine has timed-out. In other
words, if you set the time-out interval for five minutes, the RPM keeps the PAP connection open
with the printer for five minutes after the last character is written to the RPM, thus blocking other
machines from using that printer for five extra minutes; this delay is unacceptable in a shared
printer environment.

With an Apple IIGS using System Software 5.0, the RPM’s PMSetPrinter call may be used
to set the time-out interval to zero. When the time-out interval is set to zero, the session never
times out and must be closed with the Apple IIGS-specific PMCloseSession RPM call.

Apple II Technical Notes

2 of 1 #3: Avoiding Remote Printer Time-Outs

Further Reference
• AppleShare Programmer’s Guide for the Apple IIGS

AppleTalk
#4: Printing Through the Firmware 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

AppleTalk
#4: Printing Through the Firmware

Revised by: Jim Luther September 1990
Written by: Matt Deatherage & Jim Luther July 1989

This Technical Note discusses considerations of printing through the AppleTalk Remote Print
Manager (RPM) interface from ProDOS 8 applications.
Changes since March 1990: Revised code sample to simplify finding the transparent network
printing slot with the ROM 03 Apple IIGS. Please note that the method of finding the transparent
network printing slot shown in the March 1990 revision of this Note does work correctly, the
new method is just simpler. In addition, revised the wording of the Note to clarify that
transparent network printing is the RPM interface.

The AppleShare Programmer’s Guide to the Apple IIGS stated that the Remote Print Manager
(RPM) interface allowed transparent network printing through Super Serial Card entry points in
slot 7. This statement is pretty short-sighted. It’s much like saying printing to an ImageWriter II
is initiated when you do a PR#1 command—it’s only true if what you want is where you think it
is—and usually it isn’t.

Note: The AppleShare Programmer’s Guide to the Apple IIGS has been superseded by
the AppleShare Programmer’s Guide to the Apple II Family.

An Apple IIe Workstation Card, although recommended for slot 7, can work in almost any slot
(just like an ImageWriter II with a Super Serial Card can be connected to nearly any slot, except
maybe slot 3 when the 80-column firmware is active). An Apple IIGS with ROM versions 00 or
01 may only have the firmware used by the RPM interface in slot 7. An Apple IIGS with ROM
version 03 may only have the firmware used by the RPM interface in either slot 1 or 2.

Before printing through the RPM interface slot, take the same precautions you would take before
printing to any slot—check to make sure you see the requested slot is a Pascal device before
using Pascal entry points, and try to look for the signature bytes that indicate the features you
want are present. In general, avoid hard-coding slot numbers for anything.

ProDOS 8 applications which offer network printing through the RPM interface should give
users the choice of printing to any of the seven slots as well as the Network Printer. When
Network Printer is selected, the application can find the slot used by the RPM interface by using
the 6502 code sample included in this Note. Allowing the selection of Network Printer is
especially important for applications that keep a configuration file containing a user’s default

Apple II Technical Notes

AppleTalk
2 of 3 #4: Printing Through the Firmware

printer setup. If an application keeps only the slot number in the configuration file, users may
need to change the printer selection often if they print from several different machines.

Warning: Printing to a slot with no firmware generally results in a crash.

The code sample uses two methods to determine the slot the RPM interface is using. The first
method works with the Apple IIe Workstation card and the ROM 01 Apple IIGS. It looks at the
AppleTalk completion routine address returned by the AppleTalk GetInfo call, and if that
address is in the slot ROM space, then that slot is the slot used by the RPM interface. In other
words, if the completion routine points to $0000CnXX, where n is between 1 and 7, then n is the
slot to be used when printing through the RPM interface. If the completion routine address is not
in the slot ROM space, then the application cannot determine what slot the RPM interface is
using and must query the user. The second method works only with the ROM 03 Apple IIGS. It
retrieves the slot the RPM interface is using from location $E101C2.

This technique applies only to ProDOS 8 programs. Apple IIGS applications running under
GS/OS should do text printing over the network through the Remote Print Manager (.RPM)
driver, which can be identified by a deviceID of $001F as returned from the DInfo call.

;
; This routine will identify AppleTalk and the RPM interface slot (if possible).
; This routine is for ProDOS 8 applications only.
;
 keep FindRPMSlot
 longa off
 longi off

FindRPMSlot start
 lda #$00
 sta RPMSlot default to no RPM interface slot

; Check for AppleTalk (see AppleTalk Technical Note #1)

 jsr $BF00 ProDOS 8 MLI
 dc h'42' $42 command for network calls
 dc a'InfoParams' Parameter list address
 bcs NoATalk no AppleTalk; handle the error

; Get machine type & ROM version (see Apple II Miscellaneous Technical Note #7)

 sec
 jsr $FE1F What kind of machine are we on?
 bcs CheckCom Not a IIGS, check completion address
 cpy #$03
 bcc CheckCom Earlier than ROM 03 IIGS, check
; completion address

ROM03 anop ROM 03 or greater IIGS' use location $E101C2
; to find the RPM interface slot
 lda $E101C2 get the RPM interface slot
 sta RPMSlot

 beq AskForSlot
 bra HaveSlot

CheckCom anop use completion address to find slot
 lda ComReturn+2 bank $00?
 ora ComReturn+3 high byte = 0?

Developer Technical Support September 1990

AppleTalk
#4: Printing Through the Firmware 3 of 3

 bne AskForSlot no, so slot can't be determined
 lda ComReturn+1 get the address page
 cmp #$C8
 bcs AskForSlot greater or equal to $C8 is bad
 cmp #$C1
 bcc AskForSlot less than $C1 is bad
 and #$0F $Cn = $0n
 sta RPMSlot

Apple II Technical Notes

AppleTalk
4 of 3 #4: Printing Through the Firmware

HaveSlot anop AppleTalk is installed and RPM is using
; slot #RPMSlot

AskForSlot anop AppleTalk is installed but RPM interface slot
; cannot be determined

NoATalk anop AppleTalk is not installed

 rts so this sample returns

RPMSlot entry
 dc h'00' Slot RPM interface is using

InfoParams dc h'00' Synchronous only
 dc h'02' GetInfo call number
 ds 2 result code
ComReturn ds 4 completion return address
 ds 8 space for other result info

 end

Further Reference
• AppleShare Programmer’s Guide for the Apple II Family
• Apple II AppleTalk Technical Note #1, Identifying AppleTalk
• Apple II Miscellaneous Technical Note #7, Apple II Family Identification
• Apple II Miscellaneous Technical Note #8, Pascal 1.1 Identification Bytes

AppleTalk
#5: SPCommand Calls and Error $0702 1 of 2

Apple II
Technical Notes

Developer Technical Support
AppleTalk
#5: SPCommand Calls and Error $0702

Written by: Mark Day July 1989

The system now uses SPCommand calls asynchronously. Applications that have AppleShare
volumes mounted under System Software 5.0 and also make SPCommand calls themselves
should now handle the “Too many ASP calls” error, $0702.

AppleShare uses a protocol called AppleTalk Session Protocol (ASP) to maintain a connection
(session) with all servers that you are logged on to. All commands and data transfer to the server
are sent using ASP.

The implementation of ASP on the Apple IIGS has a limit of one command outstanding (waiting
to complete) per session. This means that if one command has been sent, its reply must be
received before you can send the next command. Remember, the SPCommand call is used to
send commands over a session. If you try to issue an SPCommand before another
(asynchronous) SPCommand on the same session has completed, your call will return with a
“Too many ASP calls” error, $0702.

Before System Software 5.0 on the Apple IIGS, no system software made asynchronous
SPCommand calls, and therefore this error would only occur if the developer was making the
asynchronous calls. As of System Software 5.0, the AppleShare FST uses asynchronous calls to
help prevent the loss of a connection with servers and to assist the Finder in dynamically
updating windows when a change is made to a network volume. Therefore, this error may be
returned even though the developer is not making asynchronous calls.

The error is easy to handle if you are making synchronous SPCommand calls. Simply make the
call, and if it completes with error $0702, loop back and make the call again until you can do so
without error $0702. This technique forces your program to wait until ASP is free again to make
the call.

If you are making asynchronous SPCommand calls, and you receive the $0702 error, you might
want to install a short (i.e., 1/4 second) timer using the InstallTimer call, and make the
SPCommand call again when the timer completes. Remember, the InstallTimer has to be
asynchronous, since you are making it from the completion routine of an asynchronous call.

The SPWrite call also has a limit of one outstanding call per session. System software does
not currently use asynchronous SPWrite calls, but looping until ASP returns something other
than $0702 would be a good precaution for SPWrite, too.

Apple II Technical Notes

AppleTalk
2 of 2 #5: SPCommand Calls and Error $0702

Developer Technical Support July 1989

AppleTalk
#5: SPCommand Calls and Error $0702 3 of 2

Note: When using the AppleShare FST under GS/OS, there is little reason to make
SPCommand calls yourself, since most of the calls you can make are available
through the FST as normal file system calls or as FST-specific calls.

Further Reference
• AppleShare Programmer's Guide for the Apple IIGS

• Inside AppleTalk
• System Software 5.0 documentation (APDA)

AppleTalk
#6: Apple IIe Workstation Card Anomalies 1 of 1

Apple II
Technical Notes

Developer Technical Support
AppleTalk
#6: Apple IIe Workstation Card Anomalies

Written by: Dan Strnad July 1989

This Technical Note describes known anomalies when using the Apple IIe Workstation Card.

• Pascal Protocol Serial STATUS call returns incorrect results.
When using the Workstation card, the Pascal STATUS call (normally used for
printing) does not properly indicate whether the card is ready to receive characters.
Applications should avoid this call, as the Pascal WRITE call in the firmware will
perform this function automatically.

• ProDOS 8 invisible bit is not respected.
The invisible bit in the ProDOS 8 access byte was defined after the release of the
Apple IIe Workstation Card, so the ProDOS Filing Interface present on the card treats
this bit as reserved.

Further Reference
• AppleShare Programmer’s Guide for the Apple IIGS

• Apple IIe Technical Reference Manual

AppleTalk
#7: The MLIACTV Flag and the IIe Workstation Card 1 of 2

Apple II
Technical Notes

Developer Technical Support
AppleTalk
#7: MLIACTV Flag and the IIe Workstation Card

Written by: Mark Day & Dan Strnad November 1989

This Technical Note describes a problem using the MLIACTV flag with the IIe Workstation
Card.

When using the Apple IIe Workstation Card, the MLIACTV flag does not always show that the
MLI (or PFI) is active. This inconsistency can cause programs that use the MLIACTV flag to fail
when making MLI calls from interrupt routines. Programs can correct for this problem by
making all MLI calls through the NewMLI routine listed in this Note and checking the
NewMLIActv flag instead of the MLIACTV flag. This approach solves the problem only if all
MLI calls, including those made by any interrupt routines, are made through this routine.

The following routine is a replacement for the MLI entry point at $BF00. Programs using this
routine can perform a JSR to NewMLI instead, which fixes the problem. Section 6.2.1 of the
ProDOS 8 Technical Reference Manual details how programs can cause the MLI to return the
their routine rather than the routine that originally called it. For programs using this technique
that are also using the routine below, the location below labeled NewCmdAddr replaces
CmdAdr ($BF9C). The steps involved in patching the MLI return location still apply, as
specified in Section 6.2.1 of the ProDOS 8 Technical Reference.

; MLI patch for Apple II Workstation Card
; by Mark Day
;
; code shown is compatible with MPW IIGS cross-assembler
;
; Your program should use the NewMLIActv flag instead of
; MLIACTV ($BF9B), and should JSR NewMLI instead of
; JSR MLI ($BF00).
;

machine M6502 ; 6502 code for //e
longa off
longi off

parmptr equ 0 ; two bytes on zero page
MLI equ $BF00 ; entry to the real MLI

NewMLI proc

php ; save old interrupt status to
pla ; temporarily disable interrupts
sta oldp ; so that NewCmdAddr is always valid
sei ; when an interrupting routine sees

; NewMLI active.

Apple II Technical Notes

2 of 2 #7: The MLIACTV Flag and the IIe Workstation Card

sec
ror NewMLIActv ; NewMLI is now active!

Developer Technical Support November 1989

AppleTalk
#7: The MLIACTV Flag and the IIe Workstation Card 3 of 2

;
; We need to get the return address from the stack so we can
; get the command number and parameter block address which
; follow the JSR NewMLI, and so we can save NewCmdAddr.
;

clc
pla ; get low byte of parm address - 1
sta parmptr
adc #4 ; get real return address
sta NewCmdAddr
pla
sta parmptr+1 ; save high byte of parm address - 1
adc #0
sta NewCmdAddr+1 ; save real return address

lda oldp
pha
plp ; reinstate old interrupt status

;
; Now, we copy the call number and parameter list pointer that followed
; the JSR NewMLI, and copy them after a JSR to the real MLI.
;

tya ; save Y on stack
pha
ldy #1 ; offset to command number
lda (parmptr),y ; get command number
sta NewCmdNum
iny ; point to parm list ptr (low)
lda (parmptr),y
sta NewParmPtr
iny
lda (parmptr),y
sta NewParmPtr+1
pla ; unstack value of y register
tay

;
; Now, call the real MLI with the user's command and parameter list
; and jump back to our caller.
;

jsr MLI ; call the real MLI
NewCmdNum dc.b 0 ; command number
NewParmPtr dc.w 0 ; parameter list pointer

php ; save C because LSR changes it!
lsr NewMLIActv ; MLI is no longer active
plp ; restore C
dc.b $4C ; JMP absolute instruction

NewCmdAddr dc.w 0 ; target of jump, caller's return address

NewMLIActv dc.b 0 ; $80 bit set if MLI active
oldp ds.b 1 ; used to preserve processor status

endp
end

Note that this routine also works on the Apple IIGS, even though the problem with the MLIACTV
flag only affects Apple IIe Workstation Cards.

Further Reference
• AppleShare Programmer's Guide for the Apple IIGS
• ProDOS 8 Technical Reference Manual

AppleTalk
#8: Using The @ Prefix 1 of 3

Apple II
Technical Notes

Developer Technical Support

®

AppleTalk
#8: Using The @ Prefix

Written by: Jim Luther & Dan Strnad September 1990

This Technical Note discusses use the @ prefix with multiple users.

Apple II computers on AppleShare networks feature a unique folder for each user on the server
volume, called the user’s folder. Server volumes containing these user’s folders are called user
volumes. User’s folders exist on user volumes so that the system and applications have a
standard place to store user-specific data on the network. All network volumes an Apple II can
boot from are user volumes.

Under GS/OS, the @ prefix allows applications to automatically work with the user’s folder. If a
user launches your application from a server volume with a user volume mounted, GS/OS sets
the @ prefix to the user’s folder; otherwise it sets it to the application folder. The @ prefix can
reduce design and coding effort for multilaunch features by providing the application with the
system’s best guess at where user-specific information should be stored. To safely use the user’s
folder feature, programmers need only remember to use the @ prefix with the GS/OS class 1
Open call (requestAccess = 1, 2, or 3). Using the @ prefix with the class 1 Open provides
safe access to the file for as long as it remains open, without requiring any network-specific
code.

Using the @ prefix is appropriate for applications that want to avoid network-specific
programming while being reasonably well-behaved in a network environment. For example,
applications may store printer defaults in the @ directory or use it as a default when prompting
the user to choose a directory.

There are situations writing data to a file in the @ directory could result in other users
overwriting the data; however, applications may reasonably require that users not allow these
situations to occur In Table 1, the third through fifth cases are all situations in which this
problem could occur. For best results, when opening a file for writing with the @ prefix, use
access privileges that deny write access to other users. The GS/OS class one Open call always
does this when requestAccess is non-zero. Without this precaution of denying write access
to other users, the user’s data is not protected from being overwritten while it is in use.

Apple II Technical Notes

2 of 3 #8: Using The @ Prefix

Application Is a
launched user volume @ prefix Is this case
from… present? User name set to… detectable?
local maybe any name application prefix yes
net yes (not guest) user folder yes
net no any name application prefix yes
net yes guest guest folder yes
net yes same as user folder special

another user programming
required

Table 1–Possible @ Prefix Configurations

Consider the third case. Although the application was launched from a server, the server does
not contain a user’s folder, nor is there any other mounted server containing a user’s folder. In
this case, if multiple users launch a single copy of the application from the same folder at the
same time, each user’s @ prefix would point to the same folder from which they all had
launched the application. By denying other users write access when opening the file, you
prevent users from overwriting each other’s data. However, the other users are no longer
prevented from overwriting the data when the user with write access closes the file, at which
point a different user can write to the file. Therefore, using access privileges in combination
with the @ prefix deters one user’s data from being overwritten by another, but only so long as
the file remains opened by the user with write access. This approach may provide sufficient
protection for saving certain user configuration and preference information.

When saving work the user plans to resume later, this approach may not provide sufficient
protection. In this situation, conflicts can also arise if the @ prefix is set to the application prefix
rather than to the user’s folder. It is up to the programmer to determine whether to use the @
prefix, how to use it, and whether this level of protection is sufficient for the particular data
involved.

In addition to using the @ prefix (or the user path to which it attempts to refer) with access that
denies other users permission to write to the file, applications can check to see if the user path
could point to the same folder for multiple users at the same time. To do this, the application
first checks to see if it was launched across the network. This is the case when class one
GetFileInfo on the user path returns fileSysID = $0D. If the application was launched
across the network, the user path could be set the same for multiple users if the user has logged
on as a guest (UserInfo returns a null userName, the fourth case in Table 1) or if you are
using the @ prefix and the system has set it to the application prefix on a non-user network
volume (error $60 from GetUserPath , the third case in Table 1). If the application
determines that the user prefix may be set the same for multiple users, then it could use an
alternate approach to determine where the data is to be stored, by prompting the user for
example.

Although it would be comparatively difficult for an application to determine whether multiple
users with the same name were running the application from the same server (the fifth case in

Developer Technical Support September 1990

AppleTalk
#8: Using The @ Prefix 3 of 3

Table 1), the documentation for the application could warn against this. The system does not
provide any specific information about when this condition occurs.

Apple II Technical Notes

4 of 3 #8: Using The @ Prefix

One More Caution

One other caution to observe when using the @ prefix: since other applications are also storing
data in the same user’s folder, each application should be careful to reference distinct files.
Regardless of how the application chooses to do this—by checking that the file being created
does not already exist, by choosing a distinct name for the file, or by some other method—it
should usually operate only on files of its own creation.

Programmers should keep in mind that the @ prefix is provided as a programming convenience.
The AppleShare FST also provides the GetUserPath and UserInfo calls. In combination
with GetFileInfo, these calls allow programmers to devise other, more customized
approaches for determining where to save the user’s data.

Further Reference
• AppleShare Programmer’s Guide for the Apple II Family
• GS/OS Reference
• GS/OS Technical Note #10, How Applications Find Their Files

AppleTalk
#9: The PAP Status Buffer 1 of 2

Apple II
Technical Notes

Developer Technical Support

®

AppleTalk
#9: The PAP Status Buffer

Written by: Jim Luther November 1990

This Technical Note shows the format of the status data returned into the application-supplied
status buffer by the PAPStatus and PAPOpen Printer Access Protocol (PAP) AppleTalk
commands. The status buffer format is shown for both LaserWriter and ImageWriter (with the
ImageWriter II/LQ LocalTalk Option card installed) printers.

The PAPStatus and PAPOpen AppleTalk commands must supply a pointer to a 260-byte
status buffer. When the PAPStatus or PAPOpen commands complete, the status buffer
contains the ATP data portion of a Status (TResp) packet. The first four bytes of that data are
unused, so the actual status data starts at offset $04 in the status buffer.

The LaserWriter printer returns its status data in the form of a Pascal string. That string is
usually something suitable to display on the screen (e.g., “status: idle” or “job: Fred; document:
My LaserWriter is on fire; status: busy; source: AppleTalk”). In fact, the status text displayed in
the Print Manager LaserWriter dialog boxes is usually the statusString returned by
PAPStatus or PAPOpen. Figure 1 shows the contents of the status buffer returned by a
LaserWriter.

Longword

String

$00

$04

$103

unused

statusString

Unused

The PAP status string
(Pascal string, ASCII, high-bit clear)

(string length)

Figure 1–PAP Status Buffer from a LaserWriter

The ImageWriter II/LQ LocalTalk Option card does not return a status string for display.
Instead, it returns a statusBits word where each bit within that word has a specific meaning.
Your application can interpret the statusBits word and generate an appropriate message to

Apple II Technical Notes

2 of 2 #9: The PAP Status Buffer

display. Figure 2 shows the contents of the status buffer returned by the ImageWriter II/LQ
LocalTalk Option card and the individual bit definitions of the statusBits word.

Developer Technical Support November 1990

AppleTalk
#9: The PAP Status Buffer 3 of 2

(status data length)

Longword

$00

$04

unused Unused

statusBits
$05

Byte Always = 2

Word Status bits returned by
LocalTalk ImageWriter Option
card (see following definition)

unused

$07

$103

253 bytes Unused

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 = Printer active (head is moving)

1 = Printer fault

1 = Paper jam error

1 = Printer off line

1 = Cover open error

1 = Paper out error

1 = Sheet feeder installed

1 = Color ribbon installed

1 = Printer is busy

Unused

Figure 2–PAP Status Buffer from an ImageWriter II/LQ LocalTalk Option Card

There are two additional things to note when interpreting the statusBits word returned by a
ImageWriter II/LQ LocalTalk Option card:

• If a sheet feeder is installed (bit 6 = 1), running out of paper results in a “Paper
jam error” (bit 2 = 1) instead of a “Paper out error” (bit 5).

• The ImageWriter II/LQ LocalTalk Option card has been known to randomly
return all ones in the low byte (bits 0-7) of the statusBits word. When this
happens, the statusBits word is invalid and an application should repeat the
PAPStatus call to get valid information.

Further Reference
• Inside AppleTalk, Second Edition
• AppleShare Programmer’s Guide for the Apple II Family

Apple II Technical Notes

4 of 2 #9: The PAP Status Buffer

	1. Identifying AppleTalk
	2. ProDOS 8 Compatibility on the IIe & IIGS
	3. Avoiding Remote Printer Time-Outs
	4. Printing Through the Firmware
	5. SPCommand Calls & Error $0702
	6. Apple IIe Workstation Card Anomalies
	7. MLIACTV Flat & the IIe Workstation Card
	8. Using the @ Prefix
	9. The PAP Status Buffer

